If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2-45x=0
a = 1.5; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·1.5·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*1.5}=\frac{0}{3} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*1.5}=\frac{90}{3} =30 $
| L=2/5+3h/20 | | 0=288-4x-16x^{2} | | 9n/3=5n–2n | | 8(10+8)=9(x-1+9) | | (6x18+13)=(7x18-5) | | 5(x+5)=7x+56 | | 2-^2k=64 | | 22-100x=25-70x | | 3x+1=-7-9 | | 15n^2-5n=0 | | c+75=92 | | b+90=2b-27 | | 2n+5=5=5+2n | | -x²=64-100 | | -(5+7i)^2=24-70i | | −4(x+1)=−24 | | x−8/5−2=4 | | 3/n,9/12=n | | 12=18-a | | 12=1-a | | 19x-2=18x+4 | | 10–6t=+7 | | r-(-30)=16 | | 5x-27+7x-32+x=180 | | (30-15q)/5-5q=-2 | | 4x+8+5=-15-3× | | 2(2x-2)=5x-8 | | -5=-4p | | x+2-0.5x=1 | | 2(x-1)=2x+-3 | | a=(3/7*28)+52/10 | | 3n=2-7n |